This function is a thin wrapper around optim() that performs conservation prioritization using simulated annealing.

mc_prioritize(objective, nsf, x, n = 10000L, itemp = 10, n_temp = 10L,
  maximize = TRUE, verbose = TRUE)

Arguments

objective

an objective function to optimize over, typically created by generate_objective().

nsf

a neighbour selection function, typically created by generate_nsf().

x

logical vector specifying which planning units are selected as a starting point. Traditional conservation prioritization methods, such as those implemented by the prioritizr R package, can be used to generate starting solutions.

n

integer; number of simulated annealing iterations.

itemp

numeric; initial temperature for the simulated annealing cooling schedule. Higher temperatures will result in bad changes being more likely to be accepted.

n_temp

integer; number of objective function evaluations at each temperature in the annealing process.

maximize

logical; whether the objective function is to be maximized or minimized. The standard objective function generated by generate_objective() is meant to be maximized.

verbose

logical; whether to print the simulated annealing output as the heuristic progresses.

Value

A logical vector indicating which planning units are selected in the final solution.

Examples

# generate features r <- raster::raster(nrows = 10, ncols = 10, crs = "+proj=aea", vals = sample(0:1, 100, replace = TRUE)) s <- raster::stack(r, r, r) s[[2]][] <- sample(0:1, 100, replace = TRUE, prob = c(0.6, 0.4)) s[[3]][] <- sample(0:1, 100, replace = TRUE, prob = c(0.8, 0.2)) names(s) <- c("a", "b", "c") features <- raster::rasterToPolygons(s) features <- sf::st_as_sf(features) # cost features$cost <- runif(nrow(features)) # dispersal functions disp_f <- list(a = dispersal_negexp(1 / 0.01), b = dispersal_negexp(1 / 0.005), c = dispersal_negexp(1 / 0.02)) # calculate scale factors scale_mc <- mc_reserve(features, rep(TRUE, nrow(features)), disp_f) # set budget at 50% of total budget <- 0.5 * sum(features$cost) # build an objective function and neighbour selection function objective <- generate_objective(features, disp_f, budget, delta = 0.001, blm = 0.001, units = "km") nsf <- generate_nsf(features, buffer = 20) # random starting point x_start <- sample(c(FALSE, TRUE), 100, replace = TRUE, prob = c(0.9, 0.1)) # optimize mc_prioritize(objective, nsf, x_start, n = 50L)
#> sann objective function values #> initial value 0.000748 #> final value 0.000748 #> sann stopped after 49 iterations
#> [1] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE TRUE #> [13] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE #> [25] TRUE FALSE FALSE FALSE FALSE FALSE TRUE FALSE FALSE FALSE TRUE FALSE #> [37] FALSE FALSE FALSE FALSE TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE #> [49] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE #> [61] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE TRUE FALSE FALSE #> [73] FALSE TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE #> [85] FALSE FALSE TRUE FALSE FALSE FALSE FALSE FALSE FALSE TRUE FALSE FALSE #> [97] FALSE FALSE FALSE FALSE